If it's not what You are looking for type in the equation solver your own equation and let us solve it.
l^2-14l-196=0
a = 1; b = -14; c = -196;
Δ = b2-4ac
Δ = -142-4·1·(-196)
Δ = 980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$l_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$l_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980}=\sqrt{196*5}=\sqrt{196}*\sqrt{5}=14\sqrt{5}$$l_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-14\sqrt{5}}{2*1}=\frac{14-14\sqrt{5}}{2} $$l_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+14\sqrt{5}}{2*1}=\frac{14+14\sqrt{5}}{2} $
| -27=2c–7-6c | | 36=3u | | -10z-0.3=-20z+2.5 | | 0=(3b-1)(2b+5) | | 8x=6×-14 | | 5/x=15/21 | | 24=2x-13 | | -15=9r+1-77 | | -8y-2=7y-4 | | 4+14=-2(8x-9) | | y/2−7=2 | | 2(3x+5)=-47+3 | | 3(−3−3x)+4=−6 | | 8n-4+20n=-6n-16 | | x+7=7x+13 | | -3x+4=7x-15 | | -9/x=6/7 | | 6x-12=8x-4=180 | | (x)(.75)=5760.36 | | -9y+6=8(y+5) | | 7/2y-12=-5 | | 4/5x(-8=3) | | -28+4n=6(4n-8) | | (x)(.25)=6000 | | 8n-4+20n=-6-16 | | 6-4x=6-8x-8 | | x=(.25)(6000) | | 6x+4+35×-2=166 | | |-6+3x|=15 | | 23-x/7=9 | | 5=1-p+7 | | 2(4+1.75)+5y=9 |